Courtney Primary
 School

Calculation Policy

September 2021

The National Curriculum 2014

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. ... pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.
The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately;
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language;
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Introduction to Calculations

Written methods of calculation are based on mental strategies. Each of the four operations build on mental skills which provide the foundation for jottings and informal written methods of recording. It is essential that these skills are refined before leading on to more formal written methods of calculation. See the appendix 'Fluency Progression - Expected Number Facts' to see which mental methods are covered in each year group.

Strategies for calculation always need to be represented by models and images to support, develop and secure conceptual understanding. This will build a deeper understanding and fluency. When teaching a new strategy, it is important to start with numbers that the child can easily manipulate so that they can understand the methodology. Also, where possible, make links to concrete resources and stem sentences used in previous year groups so children can see how the methods are linked.

The transition between stages should not be hurried. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

A sound understanding of the number system (place value) is essential for children to carry out calculations efficiently and accurately.

Structuring Learning

Children must have concrete experiences that enable them to create visual images. They should be encouraged to articulate their learning and to become pattern spotters. This will enable them to become able

Addition

Structures of Addition (Haylock and Cockburn 2008)

Children should experience problems with all the different addition structures in a range of practical and relevant contexts e.g. money and measurement

Aggregation

Union of two sets
How many/much altogether?
The total

Augmentation

Start at and count on Increase by

v00000-00000-00000-00000-00000-00000
Go up by

Commutative law

Understand addition can be done in any order
Start with bigger number when counting on
(Explain to children that subtraction does not have this property)

is the same as/equal to (=)

Addition Reception

Before addition can be introduced, children in Reception build on concepts taught in nursery/pre-school by working through the maths in Ranges 5 and 6 of 'Birth to 5 Matters'. Children need to have a secure knowledge of number in order to begin addition. Lots of objects (including Numicon, Numberblocks, tens frames and fingers) are used indoors and outdoors to teach numbers to 5 and then numbers to 10 .

Children are then introduced to the concept of addition as 'number bonds' through practical games and activities. In particular, children learn number bonds up to $\mathbf{5}$ and some number bonds to 10 so that ultimately they can recall these facts automatically. Children act out addition sums to physically add two groups of objects together and use arm gestures to represent the signs + and $=$. This is reinforced by opportunities provided in the outdoor area for the children to use addition e.g. adding together groups of building blocks, twigs etc. Children build on their previous knowledge of 'more' by learning that adding two groups of objects together gives them a larger number (more objects). Adults model addition vocabulary supported by age appropriate definitions. An example of this is, "Addition means we add two groups together / we put two lots of objects together. Equals means we find out how many we have got altogether. 3 add 2 equals 5 ! We have got 5 altogether." Adults support children in recording their addition sums using their own jottings on whiteboard and paper, and, if appropriate, using the formal written equation.

Do it (concrete) / Draw it (pictorial) / Write it (abstract)

Children can begin to combine groups of objects using concrete apparatus:

Construct number sentences verbally or using cards to go with practical activities.

Children are encouraged to read number sentences aloud in different ways "Three add two equals 5 " " 5 is equal to three and two" " 5 is the same as three and two"

Children make a record in pictures, words or symbols of addition activities.

Solve simple problems using fingers

$$
5+1=6
$$

Number tracks can be introduced to count up on and to find one more: \qquad |23 3 | 150 What is 1 more than 4? 1 more than 13?

Addition
 Year One

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	Say it (oracy)
Combining 2 parts to make a whole Counting sets of objects, combining then recounting using a 1:1 correspondence.			$4+3=7$ I have 4 apples and I pick 3 more, how many have I got altogether?	This is a whole \qquad , because I have all of it. This is not a whole \qquad , because I only have part of it. A whole is always bigger than part of a whole. A part is always smaller than its whole. \qquad is the whole; \qquad is a part and is a part. This number represents \qquad (the blue cars for example)
Augmentation (addition) Pupils should learn the structure "First...then...now" within a story representation to embed the understanding that addition is when a quantity increases.	Use physical objects such as counters or cubes to tell augmentation 'stories', e.g. "First I have 4 counters then I get two more. Now I have 6 counters."	Children may draw pictures or draw counters to show the calculations they are doing. They may progress to drawing bar models or filling in part-partwhole diagrams.		First...Then...Now There are \qquad and . \qquad We can write this as \qquad plus \qquad The \qquad represents the \qquad and the represents the \qquad .

Strategies within 10 Pupils learn that 10 can be partitioned into pairs of numbers that sum to 10. Similarly, then learn the number bonds for all single digit numbers. See fluency expectations for Y1.	Making 10 $6+4=10$ Number Bonds 10 $6+4=10$		$0+10=10$ $0+7=7$ $1+9=10$ $1+6=7$ $2+8=10$ $2+5=7$ $3+7=10$ $3+4=7$ $4+6=10$ $4+3=7$ $5+5=10$ $5+2=7$ $6+4=10$ $6+1=7$ $7+3=10$ $7+0=7$ $8+2=10$ $9+1=10$ $10+0=10$	If we change the order of the addends, the sum remains the same. Because addition is commutative we can add two numbers in any order and the sum remains the same.
Regrouping to make 10 Pupils use their number bond knowledge and bridge to 10 e.g.	Use tens frames to demonstrate that the sum is larger than ten.	$9+5=14$ (1) 4	$7 p+4 p=11 p$ I have 7 p, how much more do I need to make 10p. How much more do I add on now? If you know 10=7+3, what else do you know?	There are \qquad and \qquad Altogether there are \qquad . \qquad is \qquad ones is \qquad \qquad tens and \qquad ones

Addition Year Two

Using known facts	Use dienes/base ten to model the relationships.	 Children draw representations of H, T and O	$3+4=7$ leads to $30+40=$ leads to $300+400$			I know \qquad plus \qquad is equal to \qquad so \qquad tens plus \qquad tens is equal to \qquad tens. I know \qquad plus \qquad is equal to \qquad , so \qquad hundreds plus \qquad hundreds is equal to \qquad hundreds. I know that _ plus _ is equal to ten. So _ tens plus _ tens is equal to ten tens. ._ plus _ is equal to one hundred. If I know \qquad , then I know \qquad .
Adding a two-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten' Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part-whole, and number line to model.	$17+5=22$ Explore rela $\begin{gathered} 17+5=22 \\ 5+17=22 \\ 22-17=5 \\ 22-5=17 \end{gathered}$	17	5	There are \qquad , \qquad and \qquad Altogether there are \qquad . \qquad is \qquad ones \qquad \qquad tens and \qquad ones When we add and multiply whole numbers our answer gets bigger. When we take away and divide whole numbers our answer gets smaller.

Adding a two-digit number and tens	$25+10=35$ Explore that the ones digit does not change.		$\begin{gathered} 27+10=37 \\ 27+20=47 \\ 27+\square=57 \end{gathered}$	When we find ten more, the tens digit changes and the ones digit stays the same. Ten more than \qquad is \qquad . \qquad is ten more than \qquad We had \qquad tens and \qquad ones. Ten more gives us \qquad tens and _ones.
Adding two twodigit numbers Partition the numbers to show what the digits mean. The emphasis for this strategy in KS1 is to develop a deep understanding of place value. In year 2, recording addition and subtraction informally in columns supports place value and prepares for formal written methods with larger numbers later on in KS2. Ensure that when moving into any form of column the ones are calculated first.	Model using dienes, place value counters and numicon	After practically using the base 10 blocks/dienes, draw the dienes for the calculations: - lines for tens - dots for ones	$\begin{gathered} \begin{array}{c} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \end{array} \\ 60+12=72 \end{gathered}$ \square Counting on in tens and ones to solve missing number problems	There are... and... We can write this as \qquad plus \qquad The \qquad represents the ... \qquad is equal to \qquad plus \qquad \qquad plus \qquad is equal to \qquad \qquad and \qquad are the addends. \qquad is the sum.

Addition
 Year Three

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Column method- no regrouping Use this for adding numbers with two or three digits.	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks.	After practically using the base 10 blocks/dienes, draw them for the calculations: - squares for hundreds - lines for tens - dots for ones	Calculations $\begin{array}{r} 21+42= \\ \text { ro } \\ 21 \\ +42 \end{array}$

Column method regrouping	Make both numbers on a place value grid using base ten/dienes, e.g. $28+15$. Add up the ones and show how you can regroup ten ones into one ten:	Children can draw pictorial representations of the base ten/dienes to further support their conceptual understanding:	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & 60+13=73 \end{aligned}$ $\begin{array}{r} 536 \\ +85 \\ \hline 621 \\ \hline 11 \end{array}$ Once children are confident with the column method, introduce examples with missing digits.
Say it (oracy)			
\qquad is equal to \qquad plus \qquad . \qquad plus \qquad is equal to \qquad Addend plus addend is equal to the sum. We line up the ones; \qquad ones plus \qquad ones. We line up the tens; \qquad tens plus \qquad tens. The \qquad is in the ones column - it represents \qquad ones. The \qquad is in the tens column - it represents \qquad tens. In column addition, we start at the right-hand side. \qquad ones plus \qquad ones is equal to \qquad ones. \qquad tens plus \qquad tens is equal to \qquad tens. If the column sum is equal to ten or more, we must exchange the ten from one column to the next place value column.			

Addition
 Year Four

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Column method up to four digits Add numbers with up to four digits, using formal written methods of columnar addition. Estimate the answer to a calculation and use inverse operations to check answers. Solve addition two step problems in contexts, deciding which operations and methods to use and why. Ensure children are provided with opportunities to add more than 2 numbers.	As year three but increasing to four digit numbers. Initially re-cap base ten and then move on to using place value counters. Make both numbers on a place value grid. Add up the ones and model regrouping so that ten ones become one ten Add up the rest of the columns, exchanging the 10 counters from one column for the next place value colum until every column has been added.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$ $\begin{gathered} 1845+526=2371 \\ 1845 \\ +\quad 526 \\ \hline 2371 \end{gathered}$ $1845+\square=2371$

Also add decimals in the context of money. Again, link coins to base ten/dienes to ensure conceptual understanding:		
Say		
\qquad is equal to \qquad plus \qquad . \qquad plus \qquad is equal to \qquad Addend plus addend is equal to the sum. We line up the ones; \qquad ones plus \qquad ones. We line up the tens; \qquad tens plus \qquad tens. The \qquad is in the ones column - it represents \qquad ones. The \qquad is in the tens column - it represents \qquad tens. In column addition, we start at the right-hand side. \qquad ones plus \qquad ones is equal to \qquad ones. \qquad tens plus \qquad tens is equal to \qquad tens.		

Addition Year Five

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
As Year four but progressing to more than 4 digits. Add decimals to two decimal places, including money.	T 0 ${ }^{t}$ h 0 0 8 8 decimal place value counters and model exchange for addition. For decimals, ensure children have an understanding of the size. This can be done using measure (e.g. $1 \mathrm{~m}, 1 \mathrm{~cm}, 1 \mathrm{~mm}$), by physically cutting ribbon/paper/straws into ten equal pieces or using base ten/dienes:		Ensure children insert zeros as place holders. $\begin{aligned} & £ 154.75+£ 233.82=£ 388.57 \\ & \begin{array}{l} 154 \cdot 75 \\ \frac{+233 \cdot 82}{388 \cdot 57} \\ 1 \end{array} \\ & 21,848+\square=23,371 \end{aligned}$

Say it (oracy)

is equal to plus
plus \qquad is equal to \qquad -.
Addend plus addend is equal to the sum.
We line up the ones; __ ones plus __ ones.
We line up the tens; \qquad tens plus _tens.
The is in the ones column - it represents _ones.
The \qquad is in the tens column - it represents \qquad tens.
In column addition, we start at the right-hand side.
_ ones plus \qquad ones is equal to \qquad ones.
__tens plus \qquad tens.

Addition

Year Six

Strategies	Do it (concrete)	Draw it (pictorial)		Write it (abstract)
As Y5 but developing to add more digits. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Ensure children are provided with opportunities to add more than 2 numbers.	As Y5	2,354	5	Insert zeros for place holders. Including adding money, measure and decimals with different numbers of decimal points.

In Year Six, children should be taught to solve multi-step calculations involving more than one operation - mentally and using the written methods they have been taught - including numbers with more than four digits.

Say it (oracy)

\qquad is equal to __ plus \qquad
__ plus \qquad is equal to \qquad —.

Addend plus addend is equal to the sum.
We line up the ones; \qquad ones plus \qquad ones.
We line up the tens; \qquad tens plus \qquad tens.
The \qquad is in the ones column - it represents _ ones
The \qquad is in the tens column - it represents \qquad tens.
In column addition, we start at the right-hand side.
__ones plus \qquad ones is equal to \qquad ones.
__tens plus __ tens is equal to __ tens.

Subtraction

Structures of Subtraction (Haylock and Cockburn 2008)

Children should experience problems with all the different subtraction structures in a range of practical and relevant contexts e.g. money and measurement

Partitioning

Take away
... how many left?
How many are not?
How many do not?

Comparison

What is the difference?
How many more?
How many less (fewer)?
How much greater?
How much smaller?
 is five or two less than five is three'

Inverse-of-addition

What must be added? How many (much) more needed?

There are ten pegs on the hanger how many are covered?

Reduction

Start at and reduce by
Count back by
Go down by
100000-00000-00000-00000-00000-00000

Subtraction Reception

Before subtraction can be introduced, children in Reception build on concepts taught in nursery/pre-school by working through the maths objectives in Ranges 5 and 6 of 'Birth to Five Matters'. Children need to have a secure knowledge of number in order to begin subtraction. Lots of objects (including Numicon, Numberblocks, tens frames and fingers) are used indoors and outdoors to teach numbers to 5 and then numbers to 10.

Children are then introduced to the concept of subtraction through practical games and activities. In particular children learn subtraction facts linked to the number bonds up to 5 so that ultimately they can recall these facts automatically. Children act out subtractions to physically subtract a number of objects from a group. Children use arm gestures to represent the signs - and =. This is reinforced by opportunities provided in the outdoor area for the children to subtract e.g. building blocks, twigs etc. Children build on their previous knowledge of 'fewer' and 'less' by learning that subtracting means taking away a certain number of objects from a group (leaving them with fewer objects). Adults model subtraction vocabulary supported by age appropriate definition. An example of this is "Subtraction means we take away objects from a group / we have 11 got fewer objects now. Equals means we find out how many we have got left. Wow! We have only got 3 left!" Adults support children in recording their subtractions using jottings on whiteboards and on paper, and, if appropriate, using the formal written equation.

Do it (concrete) / Draw it (pictorial) / Write it (abstract)

Children begin with mostly pictorial representations or real contexts.
Concrete apparatus is used to relate subtraction to taking away and counting how many objects are left.

Concrete apparatus models the subtraction of 2 objects from a set of 5 .

Construct number sentences verbally or using cards to go with practical activities.

Say it (oracy)
There are fewer_ than __.
One less than __is _.

This is a whole \qquad because I have all of it.
This is not a whole \qquad because I only have part of it. A whole is always bigger than part of a whole. A part is always smaller than its whole.

Children are encouraged to read sentences aloud in different ways five subtract one leaves four" "four is equal to five subtract one" "four is the same as five subtract one"
Children make a record in pictures, words or symbols of subtraction activities.

Solve simple problems using fingers
Number tracks can be introduced to count back and to find one less:
What is 1 less than 9 ? 1 less than 20?

Subtraction
 Year One

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	Say it (oracy)
Taking away ones Use physical objects to demonstrate how something can be taken away. Move on to crossing out drawn representations. This can be developed by representing a group of ten with a line and ones with dots.			$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$ There are 15 cakes in the shop. One cake is eaten, how many are left. Remember to include missing number problems, $7=\square-9$	Subtracting 1 gives 1 less. Consecutive numbers have a difference of 1 . When zero is subtracted from a number, the number stays the same.
Reduction Pupils should learn the structure "First...then...now" within a story representation to embed the understanding that subtraction is when a quantity reduces.	Use counters or objects and move away from the group as they are counted.		$6-3=3$ First there were 6 sheep. Then three went away. Now there are 3 sheep.	First... Then...Now...

Part, part, whole model This model develops knowledge of the inverse relationship between addition and subtraction and is used to find the answer to missing number problems.	is one of the parts. What is the other part?		I made 9 buns for the cake sale and I only had 2 left at the end. How many did I sell? $9-2=?$	This is a whole \qquad , because I have all of it. This is not a whole \qquad because I only have part of it. A whole is always bigger than part of a whole. A part is always smaller than its whole. There are \qquad in the whole group There are \qquad in this part of the group.
Make 10 Use this strategy to subtract a single digit number from a 2-digit number. Pupils identify how many need to be taken away to make ten first. Then they take away the rest to reach the answer.	$14-5=9$ Make 14 on the ten frame or with different coloured cubes to represent the ten and the ones. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.		$15-7=$ How many do we subtract to reach the next 10 ? How many do we have left to subtract?	When taking a single number from a 2 digit number I first take away to make 10. Then I take away the rest.

Find the difference Pupils should develop a good understanding of the meaning of 'difference', exploring the inverse relationship with addition by counting back and counting up.	Practical resources to visualise 'difference' and recognise inverse relationships e.g. 12 $1=11$ and $11+1=12$ Compare objects and amounts Lay objects to represent bar model.		\qquad Use a blank number line to count back and count up between 2 numbers.	Lexie has 5 more strawberries than Jake. Jake has 11 cherries. How many does Lexie have? Look at the graph. Fewer children have green eyes than blue. What is the difference?	The \qquad represents the number of children \qquad The \qquad represents the \qquad The \qquad represents the difference; it is how many more \qquad I need.

Subtraction
 Year Two

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	Say it (oracy)
Partitioning to subtract without regrouping The emphasis for this strategy in KS1 is to develop a deep understanding of place value. When not regrouping, partitioning should be developed as a mental strategy where possible, once the concept is understood.	34-13 = 21 Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$ Part whole models Bar models	There are 35 children in the class and 12 are boys. How many are girls? 35-12= $43-21=22$	The _ represents all the \qquad The minus represents the \qquad . The \qquad represents the difference. We had __ tens and __ones. Ten less gives us __ tens and ___ones. When we find ten less, the tens digit changes and the ones digit stays the same. Also use known facts: If I know \qquad , then I know \qquad
Partitioning to subtract with regrouping The emphasis for this strategy in KS1 is to develop a deep understanding of place value.	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & \frac{33}{3} 3 \\ & 20-4= \end{aligned}$	$20-4=16$	One ten is the same as ten ones. I know that ten minus \qquad is equal to \qquad so I know that \qquad minus is equal to \qquad

Counting on to find the difference	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest．	Use a number line to count on to next ten and then the rest．	$93-76=17$	The＿＿represents the＿＿． The＿＿represents the difference； it is how many more＿＿I need． The bigger number minus the smaller number is equal to the difference
Part Whole models －useful in examining inverse relationship with addition	Model with any concrete objects reiterating the whole and each of the parts．		Ask children to check subtraction calculations using the inverse．	Addition is the inverse of subtraction．
Using known facts	Use dienes／base ten to model the relationships． ロロロ \square 민 \square \square \square $\square=$	Children draw representations of H, T and O	$\begin{aligned} & 7-2=5 \\ & \text { so } \\ & 70-20=50 \\ & \text { so } \\ & 700-200=500 \end{aligned}$	I know that＿minus＿is equal to \qquad so \qquad tens minus tens is equal to \qquad tens．

Subtraction
 Year Three

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Finding the difference	Calculate the difference between 8 and 5 .	Bar models and number lines should be use to expose the structure of different forms of subtraction i.e: finding the difference, partitioning. . and by counting on to find the difference (small difference): $231-198=33$	$8-5=3$
Column subtraction without regrouping	Use base 10 or Numicon to model. Make the bigger number and then take the smaller one away. $47-32$	Draw the base ten/dienes alongside the written calculation and then draw a line through the ones which have been subtracted. Draw this alongside the equation.	$\begin{gathered} 47-24=23 \\ -\frac{20+7}{20+4} \\ \hline 20+3 \end{gathered}$ Intermediate step may be needed to lead to clear subtraction under- $\begin{array}{rr} 32 \\ -\frac{12}{20} \\ -1 \end{array}$

Column method with regrouping Plenty of concrete exchanging should be provided before moving to pictorial and abstract phase. Start with one exchange before moving onto two. Once they are confident, introduce missing digit calculations:	Column method using base 10 and having to exchange. 41-26	Children may draw base ten and cross off.	Children might again begin by partitioning the number into plave value columns: Move on to the formal column method:
Say it (oracy)			
Establishing the basics This is a whole \qquad , because I have all of it. This is not a whole \qquad , because I only have part of it. A whole is always bigger than part of a whole. A part is always smaller than its whole. There are \qquad in the whole group			

There are ____ in this part of the group.

When finding the difference
The represents the
The
represents the difference; it is how many more \qquad I need.
The bigger number minus the smaller number is equal to the difference
When partitioning to subtract
The \qquad represents all the \qquad
The minus represents the \qquad
The \qquad represents the difference.
The difference between ___ and \qquad is \qquad

When introducing column subtraction

The ones column represents \qquad ones minus \qquad ones is equal to \qquad
The tens column represents tens minus \qquad ens is equal to \qquad tens.
If the digit underneath is bigger than the digit above, I must exchange from the place value column from the left.

Subtraction

Year Four

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Subtracting tens and ones with up to 4 digits.	As Y 3 with base ten/dienes to ensure understanding of the value of the digits, especially for regrouping. Once this is secure, progress to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters. Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Now I can subtract my ones. Now I can take away eight tens and complete my subtraction	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	$\begin{array}{r} 2 x^{\prime} 54 \\ -1562 \\ \hline 1192 \end{array}$

Subtraction

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Subtract whole numbers with more than four digits using formal written methods. Include money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point.	As Y4 but consider magnitude of numbers	Part/whole models See also place value counter examples above in Y4 guidance.	$\begin{array}{r} { }^{2} 8^{\circ} \times 1086 \\ -02128 \\ \hline 28,928 \end{array}$ Children may use zeros as place value holders.
Say it (oracy)			
When finding the differ The \qquad represents the The \qquad represents the The \qquad represents the The bigger number min When partitioning to subu The \qquad represents all th The minus represents the	umber of children \qquad . ifference; it is how many more \qquad I need. us the smaller number is equal to the differ btract \qquad \qquad		

\qquad and \qquad is \qquad
When using column subtraction
The ones column represents \qquad
\qquad ones is equal to \qquad ones.
The tens column represents __ tens minus __ tens is equal to __ tens.
If the digit underneath is bigger than the digit above, I must exchange from the place value column from the left.
The bigger number minus the smaller number is equal to the difference.)
The ones column represents _ ones minus _ ones is equal to __ ones.
The tens column represents _ tens minus _ tens is equal to _ tens.
If the digit underneath is bigger than the digit above, I must exchange from the place value column from the left.

Subtraction
 Year Six

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	
Year 6-Subtract with increasingly large and more complex numbers and decimal values.	As Y5.	As Y5	Ensure opportunities to subtract decimals with differing numbers of digits. e.g: 115. $01-2.236=$ using zero as a placeholder.	

In Year Six, children should be taught to solve multi-step calculations involving more than one operation - mentally and using the written methods they have been taught - including numbers with more than four digits, decimals and in context, e.g. $3.3 \mathrm{~km}, £ 1.99$

Say it (oracy)

When finding the difference

The _ represents the number of children_
The \qquad
The
represents the difference; it is how many more I need.
The bigger number minus the smaller number is equal to the difference
When partitioning to subtract
The \qquad represents all the \qquad
The minus represents the
\qquad and \qquad is \qquad
When using column subtraction
The ones column represents \qquad
\qquad _ ones is equal to \qquad
The tens column represents __ tens minus __ tens is equal to __ tens.
If the digit underneath is bigger than the digit above, I must exchange from the place value column from the left.
The bigger number minus the smaller number is equal to the difference.)
The ones column represents _ ones minus _ ones is equal to _ ones.
The tens column represents \qquad tens minus __ tens is equal to \qquad
If the digit underneath is bigger than the digit above, I must exchange from the place value column from the left.

Multiplication

Structures of Multiplication (Haylock and Cockburn 2008)

Children should experience problems with all the different multiplication structures in a range of practical and relevant contexts e.g. money and measurement

Repeated addition

So many lots (sets) of so many
How many (how much) altogether
Per, each

Scaling

Scaling, scale factor
Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

Commutative law

Scaling, scale factor
Doubling, trebling
So many times bigger than (longer than,
heavier than, and so on)
So many times as much as (or as many as)
$\mathbf{a} \mathbf{x} \mathbf{b}$ and $\mathbf{b} \mathbf{x}$ a are equal

4×2 is the same as/equal to 2×4

Multiplication
 Reception

By the end of Reception, children are expected to understand the concept of doubling and to recall some double facts within 10. Before doubling can be introduced, children need to have a secure knowledge of counting, number facts and addition. Children are then introduced to the concept of doubling through practical games and activities, including the use of the outdoor areas. Children act out 'doubling' by physically adding two equal groups together to find out the 'doubles' answer.

Do it (concrete) / Draw it (pictorial) / Write it (abstract) \quad Say it (oracy)

Real life contexts and use of practical equipment to count in repeated groups of the same size:

How many wheels are there altogether?

How much money do I have?

There are two groups of \qquad .
I can see \qquad and \qquad so it must be double \qquad Double \qquad is \qquad —.

Count in twos, fives, tens both aloud and with objects.
\square

Multiplication

Year One

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	Say it (oracy)
Doubling Pupils should be encouraged to develop fluent mental recall of doubles and relate to the 2 x table.	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	 If I can see 10 wheels, how many bikes are there?	This is the same as double _. _, two times is the same as double _. Doubling a whole number always gives an even number. I know double _ is _, so two groups of _is .. If there are two equal groups, we can use doubling facts.
Counting in multiples Pupils can use their fingers as they are skip counting, to develop an understanding of 'groups of'. Children should become increasingly fluent as they practise.		Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers and work out missing numbers in sequences both forward and backward. If I count in 2's will I get to the number 58?	one group of ... , 2 groups of ... a times b can represent a groups of b. It can also represent b groups of a. If there are ... equal groups we can use the ... times table.

Making equal groups and counting (or skip counting) to find the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$	As above.
Repeated addition Pupils should apply skip counting to help find the totals of repeated additions.	Use different objects to add equal groups.	Use pictorial representations, including number lines to solve problems, e.g. There are 3 sweets in one bag. How many sweets in 5 bags?	Write addition or multiplication sentences to describe objects and pictures. Intilnil $2+2+2+2+2=10 \quad 2 \times 5=10$	$a+a+a$ is the same as a 3 times. There are \qquad and \qquad and \qquad We can write this as \qquad plus \qquad plus \qquad

Arrays Showing commutative multiplication Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	$\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \\ & 15 \div 3=5 \\ & 15 \div 5=3 \end{aligned}$	Draw arrays in different rotations to find commutative multiplication sentences.		3 children go to the park to hunt for pine cones. They find 5 each, how many do they find altogether? 5 children eat the same number of cakes at a party. 15 cakes are eaten in total, how many did they each eat? $\begin{aligned} & 5+5+5=153 \times 5=153+3+3+3+3=15 \\ & 5 \times 3=15 \end{aligned}$	There are ... groups of ...

Multiplication
 Year Two

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	Say it (oracy)
Doubling (As Y1 but including larger 2 digit numbers.), repeated addition and arrays. See above.				
Count in multiples of 2, 3, 4, 5 and 10 from 0. Link skip counting to repeated addition.	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $0,2,4,6,8,10$ $0,3,6,9,12,15$ $0,5,10,15,20,25,30$ $4 \times 3=$ \square	There are _ equal groups of __. There are _ in each group. There are _ groups of _. Factor times factor is equal to the product. The product is equal to factor times factor. __ is a factor. _is a factor. The product of _ and _is _. _ is the product of _ and _. If there are __ equal groups, we can use the __times table.

Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$Use an array to write multiplication senterces and reinforce repeated addition. 00000 00000 00000 $5+5+5=15$ $3+3+3+3+3=15$ $5 \times 3=15$ $3 \times 5=15$
Using the inverse Make links when teaching division, so pupils learn the relationship between the two calculations.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Multiplication
 Year Three

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)

See above for grouping, sharing, repeated addition and arrays

Say it (oracy)

Commutative law

There are __ groups of _
There are _, two times.
a times b can represent a groups of b. It can also represent b groups of a.

Relating to times tables

If there are ... equal groups we can use the ... times table.
If is a factor, we can use the ... times table.
$a+a+a$ is the same as a 3 times.

When using grid method

If there are ten or more ones, we must regroup the ones into tens and ones.
If there are ten or more tens, we must regroup the tens into hundreds and tens.
If there are ten or more hundreds, we must regroup the hundreds into thousands and hundreds.

When using column method

To multiply a three-digit number by a two digit number, first multiply by the ones, then multiply by the tens and then add together.

Multiplication
 Year Four

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Grid Method Extending Y3 method to now include 3-digit by a 1 -digit number.	See Y3 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Fill each row with 126. Add up each column, starting with the ones making any exchanges needed. Then you have your answer.	See Y3	See Y3
Column multiplication (expanded)	Children can continue to be supported by place value counters at the stage of multiplication. Initially use examples with no regrouping, e.g. $321 \times 2=642$.	The grid method may be used to show how this relates to the formal written method. Drawing counters to show regrouping:	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, initially, children can write out what they are solving next to their answer.

Say it (oracy)

Commutative law

There are __groups of .
There are , two times.
a times b can represent a groups of b. It can also represent b groups of a.

Relating to times tables

If there are ... equal groups we can use the ... times table.
If is a factor, we can use the ... times table.
$a+a+a$ is the same as a 3 times.

When using grid method

If there are ten or more ones, we must regroup the ones into tens and ones.
If there are ten or more tens, we must regroup the tens into hundreds and tens.
If there are ten or more hundreds, we must regroup the hundreds into thousands and hundreds.

When using column method

To multiply a three-digit number by a two digit number, first multiply by the ones, then multiply by the tens and then add together.

Multiplication
 Year Five

Multiplication
 Year Six

In Year Six, children should be taught to solve multi-step calculations involving more than one operation - mentally and using the written methods they have been taught - including numbers with more than four digits.

Say it (oracy)

Commutative law

There are __groups of .
There are , two times.
a times b can represent a groups of b. It can also represent b groups of a.

Relating to times tables

If there are ... equal groups we can use the ... times table.
If is a factor, we can use the ... times table.
$a+a+a$ is the same as a 3 times.

When using grid method

If there are ten or more ones, we must regroup the ones into tens and ones.
If there are ten or more tens, we must regroup the tens into hundreds and tens.
If there are ten or more hundreds, we must regroup the hundreds into thousands and hundreds.

When using column method

To multiply a three-digit number by a two digit number, first multiply by the ones, then multiply by the tens and then add together.

Division

Structures for Division (Haylock and Cockburn 2008)

Children should experience problems with the different division structures in a range of practical and relevant contexts e.g. money and measurement

Equal-sharing

Sharing equally between How many (much) each?

Ratio structure
comparison
inverse of scaling structure of multiplication scale factor (decrease)

Inverse of multiplication (Grouping)
So many lots (sets/groups) of so many
Share equally in to groups of ...
18-3

Divide twelve into equal groups of four

$=3$

Make 12

Overlay groups of four

Barney earns three times more than Fred. If Barney earns $£ 900$ how much does Fred earn?

Jo's journey to school is three times as long as Ella's. If Jo walks to school in
30 minutes how long does it take Ella?

Division
 Reception

There are no division objectives in the EYFS statutory framework. However, children need to have a secure knowledge of counting backwards, number facts and subtraction. Children may then be introduced to the concept of halving and sharing through practical games and activities. They may act out 'halving and sharing' through activities such as sharing food for their Teddy Bear's Picnic, sharing resources equally to play a game. This is reinforced by opportunities provided in the outdoor area for the children to halve and share out objects such as building blocks, twigs etc.

Do it (concrete) / Draw it (pictorial) / Write it (abstract)

Division can be introduced through halving.
Children begin with mostly pictorial representations linked to real life contexts.

Mum has 6 socks. She grouped them into pairs - how many pairs did she make? How many socks did she have altogether?

Sharing model:
I have 10 sweets. I want to share them with my friend.
How many will we have each?


```
Say it (oracy)
There are _ altogether; half of _ is equal to .
Half of _ is equal to _.
I know that double _ is _; so half of _ is _.
```


Division

Year One

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	Say it (oracy)
Sharing Here, division is shown as sharing. E.g. If we have 24 squares of chocolate and we share them between 3 people, each person will have 8 squares each.		Children use pictures to share quantities, e.g. 8 shared between 2 is 4: Sharing: 12 shared between 3 is 4	Share 20 buns between five people. $20 \div 5=4$ Can you make up your own 'sharing' story and record a matching equation?	We can represent this as divided between _. _ divided between _ is equal to _ each.

Division
 Year Two

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)	Say it (oracy)
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding Draw circles and crosses, e.g. $8 \div 2=4$ $\begin{aligned} & x \times \\ & x \end{aligned}$	$12 \div 3=4$	If \qquad is a factor, we can use the \qquad times table. \qquad is the dividend. \qquad is the divisor. \qquad is the quotient. We can skip count using the divisor to find the quotient.
Division as grouping Here, division is shown as grouping. If we have ten cubes and put them into groups of two, there are 5 groups. This is a good opportunity to demonstrate and reinforce the inverse	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Show jumps in groups. The number of jumps equals the number of groups. the number of groups. 20 \square $20+5-?$ $5 x ?=20$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would e within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group? Max is filling party bags with sweets. He has 20 sweets altogether and decides to put 5 in	_ is divided into groups of There are _groups. \qquad is divided into \qquad groups of \qquad

relationship with multiplication.	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	every bag. How many bags can he fill? How many groups of 6 in 24? $24 \div 6=4$	The _ represents the total number of _. The _ represents the number of _ in each group.
Division within arrays Use arrays of concrete manipulatives and images of familiar objects to find division equations. Begin to use dot arrays to develop a more abstract concept of division.	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \mathrm{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4=28$ $4 \times 7=28$ $28 \div 7=4$ $28 \div 4=7$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$	There are ... groups of ...

Division

Year Three

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Use sharing, grouping and arrays as in KS1.			
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over. Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . \square \square \square There are 3 whole squares, with 1 left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=3 r 1$ Draw dots and group them to divide an amount and clearly show a remainder. © () © © © : Use bar models to show division with remainders.	Complete written divisions and show the remainder using r : $13 \div 4=3 r 1$

Say it (oracy)

Getting to grips with the basics

_ divided between _ is equal to _ each.
_ is divided into groups of _. There are _ groups.
The _ represents the total number of _. The _represents the number of _in each group.
There are ... groups of ...

Division with remainders

_ divided into groups of _ is equal to _, with a remainder of _.
The largest multiple of _ that is less than or equal to _ is _
The remainder is always less than the divisor.
_is a multiple of _, so when it is divided into groups of _ there are none left over; there is no remainder.
_is not a multiple of _, so when it is divided into groups of _ there are some left over; there is a remainder.
If the dividend is a multiple of the divisor, there is no remainder.
If the dividend is not a multiple of the divisor, there is a remainder.

Short division

If dividing the tens gives a remainder of one or more tens,
we must exchange the remaining tens for ones.
If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens.

Division
 Years Four and Five

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Short division	Use place value counters to divide using the bus stop method alongside Use place value counters to divide using the bus stop method alongside. $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently. bar models	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.

We look how much in 1 group so the answer is 14 .

Say it (oracy)

Getting to grips with the basics

_ divided between _ is equal to _ each.
_ is divided into groups of _. There are _ groups.
The _ represents the total number of _. The _represents the number of _in each group.
There are ... groups of ...

Division with remainders

_ divided into groups of _ is equal to _, with a remainder of _.
The largest multiple of _ that is less than or equal to _ is _.
The remainder is always less than the divisor.
_is a multiple of _, so when it is divided into groups of _there are none left over; there is no remainder.
_is not a multiple of _, so when it is divided into groups of _ there are some left over; there is a remainder.
If the dividend is a multiple of the divisor, there is no remainder.
If the dividend is not a multiple of the divisor, there is a remainder.

Short division

If dividing the tens gives a remainder of one or more tens,
we must exchange the remaining tens for ones.
If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens.

Division

Year Six

Strategies	Do it (concrete)	Draw it (pictorial)	Write it (abstract)
Short division As Y4/5 but interpret extend to cases where the answer has up to two decimal places. Also interpret remainders as whole numbers, fractions or by rounding.	See Y4/5 For decimals, use example of money, e.g. four people spend $£ 31$ at a restaurant, how can they split the bill equally? For fractions, use items which can be cut equally or fractions resources, e.g. 3 people want to share 7 cakes. How can they do it fairly with no cake left over?	Draw the items being divided and consider how any remainder can be drawn and then divided.	$\begin{aligned} & \text { so } £ 31 \div 4=£ 7.75 \\ & 19 \div 5=3 \mathrm{R} 4=3 \frac{4}{5}=3 \text { Remainder } \end{aligned}$
Long division Concrete and pictorial representations can be similar to those used for short division. There are two possible methods. Choose one and stick with it. Children need to be able to interpret remainders as whole	When dividing by a two-digit number, before beginning the calculation, it may be helpful to write out at least the first five multiples of that number to assist the calculation. If it is helpful, they may write all ten multiples. Method 1, including place value holders: Long division		

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} { }^{n t o} \\ \frac { 1 } { 2 } \longdiv { 2 7 8 } \end{gathered}$	$\begin{gathered} { }^{n+0} \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$	$\begin{gathered} h \pm 0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \end{gathered}$
Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \hline \frac{-2}{07} \end{gathered}$	$\begin{gathered} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$	$\begin{gathered} h t o \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$
Divide 2 into 7 . Place 3 into the quotient.	Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} n+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -27 \\ \hline 07 \\ -\quad 6 \\ \hline 18 \end{gathered}$	$\begin{gathered} h t 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ \frac{-18}{0} \\ \hline 0 \end{gathered}$	$\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \\ -18 \\ \hline 0 \end{gathered}$
Divide 2 into 18 . Place 9 into the quotient.	Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	There are no more digits to drop down. The quotient is 139 .

In Year Six, children should be taught to solve multi-step calculations involving more than one operation - mentally and using the written methods they have been taught - including numbers with more than four digits.

Say it (oracy)

Getting to grips with the basics

_ divided between _ is equal to _ each
is divided into groups of _. There are _ groups.
The _ represents the total number of .. The _represents the number of _ in each group.
There are ... groups of ...
Division with remainders
_divided into groups of _ is equal to _, with a remainder of _.
The largest multiple of _ that is less than or equal to _ is _.

The remainder is always less than the divisor.

_ is a multiple of _, so when it is divided into groups of _ there are none left over; there is no remainder.
_is not a multiple of _, so when it is divided into groups of _ there are some left over; there is a remainder.
If the dividend is a multiple of the divisor, there is no remainder.
If the dividend is not a multiple of the divisor, there is a remainder.

Short division

If dividing the tens gives a remainder of one or more tens,
we must exchange the remaining tens for ones.
If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens.

Appendix: Fluency progression - Expected Number Facts

